The concept of learned index structures relies on the idea that the input-output functionality of a database index can be viewed as a prediction task and, thus, be implemented using a machine learning model instead of traditional algorithmic techniques. This novel angle for a decades-old problem has inspired numerous exciting results in the intersection of machine learning and data structures. However, the main advantage of learned index structures, i.e., the ability to adjust to the data at hand via the underlying ML-model, can become a disadvantage from a security perspective as it could be exploited. In this work, we present the first study of poisoning attacks on learned index structures. The required poisoning approach is different from all previous works since the model under attack is trained on a cumulative distribution function (CDF) and, thus, every injection on the training set has a cascading impact on multiple data values. We formulate the first poisoning attacks on linear regression models trained on the CDF, which is a basic building block of the proposed learned index structures. We generalize our poisoning techniques to attack a more advanced two-stage design of learned index structures called recursive model index (RMI), which has been shown to outperform traditional B-Trees. We evaluate our attacks on real-world and synthetic datasets under a wide variety of parameterizations of the model and show that the error of the RMI increases up to $300\times$ and the error of its second-stage models increases up to $3000\times$.
翻译:所学的指数结构概念所依据的思想是,数据库指数的输入-输出功能可以被视为一种预测任务,因此,可以使用机器学习模型而不是传统的算法技术来实施数据库指数的输入-输出功能,而采用机器学习模型而不是传统的算法技术。这个对数十年之久的问题的新角度在机器学习和数据结构的交汇方面产生了许多令人兴奋的结果。然而,所学指数结构的主要优点,即通过基本ML模型调整手头数据的能力,从安全角度来说,可能成为可以利用的第二个计算模型的基础。在这项工作中,我们提出了对所学指数结构的中毒攻击的首次研究。所需的中毒方法不同于以前的所有工作。由于对受攻击模型进行了累积分配功能的培训,因此,对数十年之久的问题的新角度在机器学习与数据结构的交汇中产生了许多令人兴奋的结果。我们制定了对在CDFF中培训的线性回归模型的第一次中毒攻击,这是拟议所学的第二个指数结构的基本组成部分。我们推广了我们的中毒技术,以攻击更先进的两个阶段的指数结构设计,称为累进式模型(RMI) 所需的中毒方法与所有之前的模型(RMI)增加了受攻击的模型的模型的模型的模型,在现实和模型中显示的合成攻击中,在现实中显示的模型的变异性数据攻击中显示的模型和模型的变异。