Improper Input Validation (IIV) is a software vulnerability that occurs when a system does not safely handle input data. Even though IIV is easy to detect and fix, it still commonly happens in practice. In this paper, we study to what extent developers can detect IIV and investigate underlying reasons. This knowledge is essential to better understand how to support developers in creating secure software systems. We conduct an online experiment with 146 participants, of which 105 report at least three years of professional software development experience. Our results show that the existence of a visible attack scenario facilitates the detection of IIV vulnerabilities and that a significant portion of developers who did not find the vulnerability initially could identify it when warned about its existence. Yet, a total of 60 participants could not detect the vulnerability even after the warning. Other factors, such as the frequency with which the participants perform code reviews, influence the detection of IIV. Data and materials: https://doi.org/10.5281/zenodo.3996696


翻译:不当输入验证(IIV)是当系统不能安全处理输入数据时出现的软件脆弱性。即使IIV很容易检测和修复,但在实践中仍然经常发生。在本文中,我们研究开发者在多大程度上能够检测IIV并调查基本原因。这种知识对于更好地了解如何支持开发者创建安全软件系统至关重要。我们与146名参与者进行了在线实验,其中105名参与者报告了至少三年专业软件开发经验。我们的结果显示,存在可见的攻击情景有助于发现IIV脆弱性,而且大量最初发现脆弱性的开发者在发现脆弱性时,可以发现它的存在。然而,共有60名参与者即使在发出警告后也无法发现脆弱性。其他因素,如参与者进行代码审查的频率,影响IIV的检测。数据和材料:https://doi.org/10.5281/zenodo3.9996。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员