Usually, managers or technical leaders in software projects assign issues manually. This task may become more complex as more detailed is the issue description. This complexity can also make the process more prone to errors (misassignments) and time-consuming. In the literature, many studies aim to address this problem by using machine learning strategies. Although there is no specific solution that works for all companies, experience reports are useful to guide the choices in industrial auto-assignment projects. This paper presents an industrial initiative conducted in a global electronics company that aims to minimize the time spent and the errors that can arise in the issue assignment process. As main contributions, we present a literature review, an industrial report comparing different algorithms, and lessons learned during the project.


翻译:通常情况下,软件项目的管理人员或技术领导人手工分配问题。由于问题说明更为详细,这项任务可能变得更加复杂。这种复杂性还可能使这一过程更容易出错(误派)和耗费时间。在文献中,许多研究的目的是通过使用机器学习战略解决这一问题。虽然没有适用于所有公司的具体解决办法,但经验报告有助于指导工业自动分配项目的选择。本文介绍了一家全球电子公司为尽量减少问题分配过程中所花费的时间和可能发生的错误而采取的一项工业举措。作为主要贡献,我们提交了一份文献审查、一份比较不同算法的工业报告以及项目中吸取的经验教训。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
45+阅读 · 2019年12月20日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员