In 1983, Borowiecki and J\'o\'zwiak posed an open problem of characterizing graphs with purely imaginary per-spectrum. The most general result, although a partial solution, was given in 2004 by Yan and Zhang, who show that if a graph contains no subgraph which is an even subdivision of $K_{2,3}$, then it has purely imaginary per-spectrum. Zhang and Li in 2012 proved that such graphs are planar and admit a pfaffian orientation. In this article, we describe how to construct graphs with purely imaginary per-spectrum having a subgraph which is an even subdivision of $K_{2,3}$ (planar and nonplanar) using coalescence of rooted graphs.
翻译:1983年,Borowiecki 和 J\'o\\'zwiak 提出了纯粹假想的每个频谱的图表特征化的开放问题。 2004年,Yan和Zhang给出了最普遍的结果,尽管只是部分的解决方案,但最普遍的结果是,2004年由Yan和Zhang给出的,其中显示,如果一个图表没有包含甚至小于2,3美元的一个子集,那么它就具有纯假想的每个频谱。张和Li在2012年证明,这些图表是平面图,并承认了一个假想方向。在本篇文章中,我们描述了如何用纯假想的每个频谱构建图表,其子集甚至以2,3美元(平面和非平面图)为子集。