Characterization of the long-time behavior of an inviscid incompressible fluid evolving on a two dimensional domain is a long-standing problem in mathematical physics. The motion is described by Euler's equations: a non-linear system with infinitely many conservations laws, yet non-integrable dynamics. In both experiments and numerical simulations, coherent vortex structures, or blobs, typically emerge after some stage of initial mixing. These formations dominate the slow, large-scale dynamics. Nevertheless, fast, small-scale dynamics also persist. Kraichnan, in his classical work, qualitatively describes a direct cascade of enstrophy into smaller scales and a backward cascade of energy into larger scales. Previous attempts to quantitatively model this double cascade are based on filtering-like techniques that enforce separation from the outset. Here we show that Euler's equations posses a natural, intrinsic splitting of the vorticity function. This canonical splitting is remarkable in four ways: (i) it is defined only in terms of the Poisson bracket and the Hamiltonian, (ii) it characterizes steady flows (equilibria), (iii) it genuinely, without imposition, evolves into a separation of scales, thus enabling the quantitative dynamics behind Kraichnan's qualitative description, and (iv) it accounts for the "broken line" in the power law for the energy spectrum (observed in both experiments and numerical simulations). The splitting originates from a quantized version of Euler's equations in combination with a standard quantum-tool: the spectral decomposition of Hermitian matrices. In addition to theoretical insight, the canonical scale separation dynamics might be used as a foundation for stochastic model reduction, where the small scales are modeled by suitable multiplicative noise.


翻译:在二维域内演化的隐隐性压缩液体的长期行为特性在二维域内是一个长期存在的数学物理学问题。 运动由 Euler 的方程式描述: 一个非线性系统, 具有无限多的保存法, 但却是不可加固的动态。 在实验和数字模拟中, 一致的旋涡结构, 或浮质, 通常在初始混合的某个阶段后出现。 这些结构支配着缓慢的、 大型的动态。 然而, 快速的、 小规模的动态也持续着。 Kraichnan 在他的古典著作中, 定性地描述着一个直接的螺旋直线性进化直流, 将能量向后级级级的级螺旋。 之前试图从数量上建模这个双级的系统, 以过滤类似技术为基础, 从一开始就实施分离。 我们在这里显示, Euler 的方程式是自然、 内在的变形变形的变形模型。 这种变形在四种方式上是惊人的:(i) 它只是从Poisson 轮值和汉密尔密尔米尔基级的变变变形的直基的直基的直基, 。 (ii),, 它的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形, 在的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形, 在的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形,,, 的变的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变的变形的变形的变形的变形的变形的变形的变形变形的变形的变形的变形的变形的变形的变形

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员