We present DeepAL, a Python library that implements several common strategies for active learning, with a particular emphasis on deep active learning. DeepAL provides a simple and unified framework based on PyTorch that allows users to easily load custom datasets, build custom data handlers, and design custom strategies without much modification of codes. DeepAL is open-source on Github and welcome any contribution.
翻译:我们展示了DeepAL,这是一个Python图书馆,它实施了若干共同的积极学习战略,特别侧重于深层的积极学习。 DeepAL提供了一个基于PyTorrch的简单统一的框架,让用户能够轻松地输入自定义数据集,建立自定义的数据处理器,设计自定义战略,而没有太多的代码修改。 DeepAL是Github的开放源头,欢迎任何贡献。