We study the topological $\mu$-calculus, based on both Cantor derivative and closure modalities, proving completeness, decidability and FMP over general topological spaces, as well as over $T_0$ and $T_D$ spaces. We also investigate relational $\mu$-calculus, providing general completeness results for all natural fragments of $\mu$-calculus over many different classes of relational frames. Unlike most other such proofs for $\mu$-calculus, ours is model-theoretic, making an innovative use of a known Modal Logic method (--the 'final' submodel of the canonical model), that has the twin advantages of great generality and essential simplicity.
翻译:我们根据Cantor衍生物和封闭模式研究表层 $ mu$- calculus, 证明整个表层空间的完整性、可变性和FMP, 以及超过$_0美元和$T_D的表层。 我们还调查关系$\mu$- calculs, 提供许多不同类别关系框架的所有美元/ mu$- calculus的自然碎片的整体完整性结果。 与大多数关于$\mu$- calculus的其他证据不同, 我们的表层是模型理论学, 创新地使用了已知的Modal逻辑方法( - “最终” 明理模型的子模型 ), 它具有极大的普遍性和基本简单性的双重优势 。