Neural networks are a powerful framework for foreground segmentation in video acquired by static cameras, segmenting moving objects from the background in a robust way in various challenging scenarios. The premier methods are those based on supervision requiring a final training stage on a database of tens to hundreds of manually segmented images from the specific static camera. In this work, we propose a method to automatically create an "artificial" database that is sufficient for training the supervised methods so that it performs better than current unsupervised methods. It is based on combining a weak foreground segmenter, compared to the supervised method, to extract suitable objects from the training images and randomly inserting these objects back into a background image. Test results are shown on the test sequences in CDnet.


翻译:神经网络是静态相机所获取的视频中地表分割的强大框架,在各种挑战性情景中以稳健的方式将对象从背景中分离出来。 首要方法是基于监督的方法, 需要在特定静态相机的数十至数百个人工分割图像数据库中进行最后培训阶段的监督。 在这项工作中, 我们提出一种方法, 自动建立一个“ 人工” 数据库, 足以对受监督的方法进行培训, 使其比目前未受监督的方法运行得更好。 它基于将弱质的地表分割器与受监督的方法相结合, 从培训图像中提取合适的对象, 并随机将这些对象插入到背景图像中。 测试结果显示在CDnet 的测试序列中 。

0
下载
关闭预览

相关内容

机器学习的可解释性
专知会员服务
69+阅读 · 2020年12月18日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年3月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月29日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关VIP内容
机器学习的可解释性
专知会员服务
69+阅读 · 2020年12月18日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年3月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员