Graph Edit Distance (GED) is a popular similarity measurement for pairwise graphs and it also refers to the recovery of the edit path from the source graph to the target graph. Traditional A* algorithm suffers scalability issues due to its exhaustive nature, whose search heuristics heavily rely on human prior knowledge. This paper presents a hybrid approach by combing the interpretability of traditional search-based techniques for producing the edit path, as well as the efficiency and adaptivity of deep embedding models to achieve a cost-effective GED solver. Inspired by dynamic programming, node-level embedding is designated in a dynamic reuse fashion and suboptimal branches are encouraged to be pruned. To this end, our method can be readily integrated into A* procedure in a dynamic fashion, as well as significantly reduce the computational burden with a learned heuristic. Experimental results on different graph datasets show that our approach can remarkably ease the search process of A* without sacrificing much accuracy. To our best knowledge, this work is also the first deep learning-based GED method for recovering the edit path.
翻译:图形编辑距离( GED) 是双向图形的流行相似度测量, 也指将编辑路径从源图恢复到目标图。 传统的 A* 算法因其穷尽性而面临可缩放问题, 其搜索超常性在很大程度上依赖于人类先前的知识。 本文展示了一种混合方法, 其方法是将传统搜索技术的可解释性进行梳理, 以及深层嵌入模型的效率和适切性, 以实现具有成本效益的 GED 求解器。 在动态编程的启发下, 节点层嵌入被指定在动态的重新利用时态中, 并且鼓励对亚优化的分支进行剪切。 为此, 我们的方法可以随时以动态的方式融入 A* 程序, 并且通过学习超常性的方式大量减少计算负担。 不同图表数据集的实验结果显示, 我们的方法可以显著地简化 A* 的搜索过程, 同时又不牺牲很多准确性。 根据我们的最佳了解, 这项工作也是第一种深层次的基于学习的 GED 方法, 来恢复编辑路径 。