Many recent literary works have leveraged generative adversarial networks (GANs) to spawn unseen evasion samples. The purpose is to annex the generated data with the original train set for adversarial training to improve the detection performance of machine learning (ML) classifiers. The quality generation of adversarial samples relies on the adequacy of training data samples. Sadly in low data regimes like medical anomaly detection, drug discovery and cybersecurity, the attack samples are scarce in number. This paper proposes a novel GAN design called Evasion Generative Adversarial Network (EVAGAN), more suitable for low data regime problems that use oversampling for detection improvement of ML classifiers. EVAGAN not only can generate evasion samples, but its discriminator can act as an evasion aware classifier. We have considered Auxiliary Classifier GAN (ACGAN) as a benchmark to evaluate the performance of EVAGAN on cybersecurity (ISCX-2014, CIC-2017 and CIC2018) botnet and CV (MNIST) datasets. We demonstrate that EVAGAN outperforms ACGAN for imbalance datasets regarding detection performance, training stability, time complexity. EVAGAN's generator quickly learns to generate the low sample class and hardens its discriminator simultaneously. In contrast to ML classifiers that require security hardening after being adversarially trained by GAN generated data, EVAGAN renders it needless. The experimental analysis proves EVAGAN to be an efficient evasion hardened model for low data regimes in cybersecurity and CV. Code will be available at https://github.com/rhr407/EVAGAN.


翻译:许多最近的文学作品利用了基因对抗网络(GANs)来生成逃避的样本。目的是将生成的数据与最初的对抗性训练训练列列列列列列,以提高机器学习(ML)分类者的检测性能。对抗性训练样品的质量生成取决于培训数据样本的充足性。在医疗异常检测、药物发现和网络安全等低数据系统中,攻击样品数量很少。本文件建议采用一种新型的GAN设计,称为Evasion General Adversarial 网络(EVAGAN),更适合低数据系统问题,而低数据系统使用过度取样来改进ML分类者的检测性能。EVAGAN不仅可以生成逃避性能样本,而且其导师也可以起到规避性能分析者的作用。我们认为,辅助性分类GAN(ACAN)是评估EVAGAN网络(IS-2014、CIC-2017和CIC2018 机器人网络和CV(MNIST)数据集。我们表明,EVAGAN超越AGGGGGG(C)的低度模型, 能够快速地使其在检测性测试性变压变压数据分析结果后进行。CLLLLILLILIANS数据分析。在测试数据变现为硬化数据变现数据分析后,需要。在DNA数据分析后, 数据变压数据变的精确数据变的精确到硬性数据系统。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员