Indonesia holds the second-highest-ranking country for the highest number of malaria cases in Southeast Asia. A different malaria parasite semantic segmentation technique based on a deep learning approach is an alternative to reduce the limitations of traditional methods. However, the main problem of the semantic segmentation technique is raised since large parasites are dominant, and the tiny parasites are suppressed. In addition, the amount and variance of data are important influences in establishing their models. In this study, we conduct two contributions. First, we collect 559 microscopic images containing 691 malaria parasites of thin blood smears. The dataset is named PlasmoID, and most data comes from rural Indonesia. PlasmoID also provides ground truth for parasite detection and segmentation purposes. Second, this study proposes a malaria parasite segmentation and detection scheme by combining Faster RCNN and a semantic segmentation technique. The proposed scheme has been evaluated on the PlasmoID dataset. It has been compared with recent studies of semantic segmentation techniques, namely UNet, ResFCN-18, DeepLabV3, DeepLabV3plus and ResUNet-18. The result shows that our proposed scheme can improve the segmentation and detection of malaria parasite performance compared to original semantic segmentation techniques.
翻译:印度尼西亚是东南亚疟疾病例数量最多的第二高国家。基于深层次学习方法的不同疟疾寄生虫静默分解技术是减少传统方法局限性的一种替代方法,但语义分解技术的主要问题是,由于大型寄生虫占支配地位,小寄生虫受到抑制,因此出现了语义分解技术的主要问题。此外,数据的数量和差异是建立模型的重要影响。在这项研究中,我们做了两项贡献。首先,我们收集了559个微生物图象,其中含有691个薄血涂片的疟疾寄生虫。数据集的名称是PlasmoID,大多数数据来自印度尼西亚农村。PlasmoID也为寄生虫检测和分解目的提供了地面真相。第二,这项研究提出了将快速RCNNN和静脉分解技术相结合的疟疾寄生虫分解和检测方案。对PlasmoID数据集进行了评估,将拟议计划与最近对语义分解技术的研究进行了比较,即UNet、ResFCN-18、DeepLabV3、DeepLabV3plet3和Reset18等数据来自印度尼西亚农村。该数据集还提供土壤分解结果,用于检测和ResUN18。该研究提出了疟疾寄生技术的绩效分析结果,可以改进我们原始分解。