Accurate delineation of the left ventricular boundaries in late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) is an essential step for scar tissue quantification and patient-specific assessment of myocardial infarction. Many deep-learning techniques have been proposed to perform automatic segmentations of the left ventricle (LV) in LGE-MRI showing segmentations as accurate as those obtained by expert cardiologists. Thus far, the existing models have been overwhelmingly developed and evaluated with LGE-MRI datasets from single clinical centers. However, in practice, LGE-MRI images vary significantly between clinical centers within and across countries, in particular due to differences in the MRI scanners, imaging conditions, contrast injection protocols and local clinical practise. This work investigates for the first time multi-center and multi-vendor LV segmentation in LGE-MRI, by proposing, implementing and evaluating in detail several strategies to enhance model generalizability across clinical cites. These include data augmentation to artificially augment the image variability in the training sample, image harmonization to align the distributions of LGE-MRI images across centers, and transfer learning to adjust existing single-center models to unseen images from new clinical sites. The results obtained based on a new multi-center LGE-MRI dataset acquired in four clinical centers in Spain, France and China, show that the combination of data augmentation and transfer learning can lead to single-center models that generalize well to new clinical centers not included in the original training. The proposed framework shows the potential for developing clinical tools for automated LV segmentation in LGE-MRI that can be deployed in multiple clinical centers across distinct geographical locations.
翻译:精确地划定晚期 Gadolinium-加固磁共振成像(LGE-MRI) 左心室边界是各国内部和跨国家临床中心之间临床中心之间的一个重要步骤,但在实践中,LGE-MRI图像差异很大,特别是由于MRI扫描仪、成像条件、对比注射规程和当地临床实践的差异,许多深层学习技术提议对LGE-MRI的左心室(LV)进行自动分割,显示与专家心脏病学家获得的分解一样准确。迄今为止,现有模型与LGE-MRI的原始临床中心数据集绝大多数开发和评价。但在实践中,LGE-MRI的临床中心与国内临床中心的临床中心之间存在差异,特别是由于MRI扫描仪、成像条件、对比注射规程和当地临床实践的差异。这项工作首次对左心室(LGE-MRI)左心室(LGE-M)的左心室断裂断裂进行了多点调查,提出、实施并详细评价了几项战略,以加强临床工具的模型的普及性。其中包括数据,人为地增强培训样本的图像的图像变异性,使培训的图像在培训样本中位、图像统一到西班牙的临床中心之间的图像分布中心之间的新定位中心,从而显示在法国的流转成像中心向法国的流转动。