Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.
翻译:多数组群的基因化模型暗含地假定,每个组群的数据点数随着数据点总数而线性增长。 精密混合模型、 狄里赫莱工艺混合模型和 Pitman- Yor工艺混合模型和所有其他无限可交换的组群模型一样,作出这一假设。 但是,对于某些应用来说,这一假设是不恰当的。例如,执行实体的分辨率,每个组群的大小应与数据集的大小无关,而每个组群应包含数据点总数中的微小部分。这些应用要求产生组群的模型,其大小随着数据集的大小而亚线性增长。我们通过界定微组群属性和引入能够显示这一属性的新类型的模型来满足这一要求。我们用四个实体分辨率数据集将这一类中的模型与两个常用的群集模型进行比较。