In lattice QCD, the trace of the inverse of the discretized Dirac operator appears in the disconnected fermion loop contribution to an observable. As simulation methods get more and more precise, these contributions become increasingly important. Hence, we consider here the problem of computing the trace $\mathrm{tr}(D^{-1})$, with $D$ the Dirac operator. The Hutchinson method, which is very frequently used to stochastically estimate the trace of a function of a matrix, approximates the trace as the average over estimates of the form $x^{H} D^{-1} x$, with the entries of the vector $x$ following a certain probability distribution. For $N$ samples, the accuracy is $\mathcal{O}(1/\sqrt{N})$. In recent work, we have introduced multigrid multilevel Monte Carlo: having a multigrid hierarchy with operators $D_{\ell}$, $P_{\ell}$ and $R_{\ell}$, for level $\ell$, we can rewrite the trace $\mathrm{tr}(D^{-1})$ via a telescopic sum with difference-levels, written in terms of the aforementioned operators and with a reduced variance. We have seen significant reductions in the variance and the total work with respect to exactly deflated Hutchinson. In this work, we explore the use of exact deflation in combination with the multigrid multilevel Monte Carlo method, and demonstrate how this leads to both algorithmic and computational gains.
翻译:在 lattice QCD 中, 离散的 Dirac 操作员的倒数在离散的 Fermion 环状对可观察性的贡献中出现反差的痕迹。 随着模拟方法越来越精确, 这些贡献变得越来越重要 。 因此, 我们在这里考虑计算 track $\ mathrm{ tr} (D ⁇ -1}) 美元的问题, 使用 Dirac 操作员 $ Dirac 。 Hutchinson 方法非常频繁地用来对矩阵函数的踪迹进行随机估测, 其微值接近于 $xH} D ⁇ -1} x$ 的估计数的平均值, 随着矢量 $xx 的概率分布, 这些值越来越精确。 对于美元样本, 准确性是 $\ mathal{ (1/ sqrt{N} 美元 。 ) 在最近的工作中, 我们采用了多电网多层次的 Montecarlo: 与操作员 $D ⁇ 美元, 组合 $P ⁇ 美元 和 $R ⁇ ell} 美元, 对于 美元, 我们可以重新修正 rodeal decal decal decal decal deal deal deal deal deal deal deal de lex lex lex lex levelevations de leglex lex, 我们 legal deal deal decals lex lex 和 leglexxxxxxxxxxxx 和我们 和我们 lex lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx