This paper studies causal inference in randomized experiments under network interference. Commonly used models of interference posit that treatments assigned to alters beyond a certain network distance from the ego have no effect on the ego's response. However, this assumption is violated in many models of social interactions. We propose a substantially weaker model of "approximate neighborhood interference" (ANI) under which treatments assigned to alters further from the ego have smaller, but potentially nonzero, effects on the ego's response. For well-known models of social interactions, we can formally verify that ANI holds. We also prove that, under ANI and restrictions on the network topology, standard inverse-probability weighting estimators consistently estimate useful exposure effects and are asymptotically normal under asymptotics taking the network size large. For inference, we consider a network HAC variance estimator. Under a finite population model, we show that the estimator is biased but that the bias can be interpreted as the variance of unit-level exposure effects. This generalizes Neyman's well-known result on conservative variance estimation to settings with interference.
翻译:本文研究在网络干扰下随机实验的因果关系推断。 常用的干扰模型认为,分配用于改变超出某种网络距离与自我自我自我的治疗对自我反应没有影响。 但是,在许多社会互动模式中,这一假设被违反。 我们提出了一个“近邻干涉”(ANI)的较弱模式,根据这种模式,分配用于进一步改变自我的治疗对自我反应的影响较小,但潜在非零。对于众所周知的社会互动模式,我们可以正式核实ANI是否持有。 我们还证明,根据ANI和网络地形学的限制,标准反概率加权测量标准始终估计有用的暴露效应,在以网络大小为主的无影响下,是暂时性正常的。 我们推论,我们认为HAC差异估计对自我反应的影响较小,但可能非零。 在有限的人口模式下,我们表明估计是偏差,但这种偏差可以被解释为单位级接触效应的差异。 一般来说, Neyman对保守性差异的估计结果,与环境的干扰是众所周知的。