Minority groups have been using social media to organize social movements that create profound social impacts. Black Lives Matter (BLM) and Stop Asian Hate (SAH) are two successful social movements that have spread on Twitter that promote protests and activities against racism and increase the public's awareness of other social challenges that minority groups face. However, previous studies have mostly conducted qualitative analyses of tweets or interviews with users, which may not comprehensively and validly represent all tweets. Very few studies have explored the Twitter topics within BLM and SAH dialogs in a rigorous, quantified and data-centered approach. Therefore, in this research, we adopted a mixed-methods approach to comprehensively analyze BLM and SAH Twitter topics. We implemented (1) the latent Dirichlet allocation model to understand the top high-level words and topics and (2) open-coding analysis to identify specific themes across the tweets. We collected more than one million tweets with the #blacklivesmatter and #stopasianhate hashtags and compared their topics. Our findings revealed that the tweets discussed a variety of influential topics in depth, and social justice, social movements, and emotional sentiments were common topics in both movements, though with unique subtopics for each movement. Our study contributes to the topic analysis of social movements on social media platforms in particular and the literature on the interplay of AI, ethics, and society in general.
翻译:少数族群一直利用社交媒体来组织社会运动,从而产生深刻的社会影响。黑人生命物质(BLM)和阻止亚洲仇恨(SAH)是两种成功的社会运动,在推特上传播,促进反种族主义抗议和活动,提高公众对少数群体面临的其他社会挑战的认识。然而,以往的研究大多对推特或访谈用户进行了定性分析,这些分析可能无法全面、有效地代表所有推文。很少有研究以严格、量化和以数据为中心的方式探索BLM和SAH对话中的推特专题。因此,在这项研究中,我们采用了混合方法,全面分析BLM和SAH Twitter专题。我们实施了潜在的Drichlet分配模式,以理解高层言论和议题,以及(2) 公开编码分析,以确定所有推文的具体主题。我们收集了超过100万个推特,同时收集了#blacklivesormess和#stustasahhatte标签,并比较了它们的主题。我们的研究结果显示,在深度、社会运动和社会互动性平台中,我们每个社会运动的有各种有影响力的专题、社会运动和情感互动性,但在每一个社会伦理学专题上,我们的社会运动的每个社会运动的分流和情绪分析中都有共同的论文。