Learning sketching matrices for fast and accurate low-rank approximation (LRA) has gained increasing attention. Recently, Bartlett, Indyk, and Wagner (COLT 2022) presented a generalization bound for the learning-based LRA. Specifically, for rank-$k$ approximation using an $m \times n$ learned sketching matrix with $s$ non-zeros in each column, they proved an $\tilde{\mathrm{O}}(nsm)$ bound on the \emph{fat shattering dimension} ($\tilde{\mathrm{O}}$ hides logarithmic factors). We build on their work and make two contributions. 1. We present a better $\tilde{\mathrm{O}}(nsk)$ bound ($k \le m$). En route to obtaining the bound, we give a low-complexity \emph{Goldberg--Jerrum algorithm} for computing pseudo-inverse matrices, which would be of independent interest. 2. We alleviate an assumption of the previous study that the sparsity pattern of sketching matrices is fixed. We prove that learning positions of non-zeros increases the fat shattering dimension only by ${\mathrm{O}}(ns\log n)$. Also, experiments confirm the practical benefit of learning sparsity patterns.
翻译:最近,巴特利特、印地克和瓦格纳(2022 COLT 2022 ) 提出了一个用于学习型上帝军的概略。具体地说,对于使用每列非零美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一文一文一文一文一文一文一文,我们用一个低调的 =emph{Goldberg-Jerrum算法} 来计算假冒型矩阵,这将引起独立的兴趣。 2. 我们减轻了先前研究的假设,即素描写基质基底基底底底基质模型的不值模式是固定的。