Time-lapse fluorescence microscopy (TLFM) is an important and powerful tool in synthetic biological research. Modeling TLFM experiments based on real data may enable researchers to repeat certain experiments with minor effort. This thesis is a study towards deep learning-based modeling of TLFM experiments on the image level. The modeling of TLFM experiments, by way of the example of trapped yeast cells, is split into two tasks. The first task is to generate synthetic image data based on real image data. To approach this problem, a novel generative adversarial network, for conditionalized and unconditionalized image generation, is proposed. The second task is the simulation of brightfield microscopy images over multiple discrete time-steps. To tackle this simulation task an advanced future frame prediction model is introduced. The proposed models are trained and tested on a novel dataset that is presented in this thesis. The obtained results showed that the modeling of TLFM experiments, with deep learning, is a proper approach, but requires future research to effectively model real-world experiments.
翻译:短时荧光显微镜(TLFM)是合成生物研究中重要而有力的工具。基于真实数据的TLFM实验模型可以使研究人员以轻微的努力重复某些实验。 该论文是对图像层的TLFM实验的深层次学习模型的研究。 以困住的酵母细胞为例,TLFM实验的模型分为两个任务。 第一个任务是根据真实图像数据生成合成图像数据。 为了解决这一问题,提议建立一个新型的基因化对抗网络,用于有条件和无条件生成图像。 第二个任务是模拟多个离散时间步骤的光场显微镜图像。 要完成这个模拟任务,将引入一个先进的未来框架预测模型。 拟议的模型是在本论文中介绍的新数据集中培训和测试的。 获得的结果显示,通过深层学习对TLFM实验进行模型的模型是一个正确的方法,但需要今后进行研究才能有效地模拟真实世界的实验。