Computational color constancy has the important task of reducing the influence of the scene illumination on the object colors. As such, it is an essential part of the image processing pipelines of most digital cameras. One of the important parts of the computational color constancy is illumination estimation, i.e. estimating the illumination color. When an illumination estimation method is proposed, its accuracy is usually reported by providing the values of error metrics obtained on the images of publicly available datasets. However, over time it has been shown that many of these datasets have problems such as too few images, inappropriate image quality, lack of scene diversity, absence of version tracking, violation of various assumptions, GDPR regulation violation, lack of additional shooting procedure info, etc. In this paper, a new illumination estimation dataset is proposed that aims to alleviate many of the mentioned problems and to help the illumination estimation research. It consists of 4890 images with known illumination colors as well as with additional semantic data that can further make the learning process more accurate. Due to the usage of the SpyderCube color target, for every image there are two ground-truth illumination records covering different directions. Because of that, the dataset can be used for training and testing of methods that perform single or two-illuminant estimation. This makes it superior to many similar existing datasets. The datasets, it's smaller version SimpleCube++, and the accompanying code are available at https://github.com/Visillect/CubePlusPlus/.


翻译:计算颜色共性的重要部分之一是光度估计, 即估算光度颜色。 当提出光度估计方法时, 其准确性通常通过提供在公开提供的数据集图像中获取的误差度量值来报告。 但是, 随着时间的推移, 已经显示许多这类数据集存在一些问题, 如图像太少、 图像质量不适当、 缺乏场景多样性、 没有版本跟踪、 各种假设的违反、 GDPR 规则违反、 缺少额外的射击程序信息等。 在本文件中, 提议一个新的光度估计数据集, 目的是缓解许多上述问题, 帮助进行光度估计研究。 它由4890张图像组成, 且有已知的纯度颜色, 以及能够进一步使学习过程更准确的更多语义数据数据集。 由于使用 SpyderClective 、 违反各种假设、 GDPR 规则的违反、 缺少额外的射击程序信息等。 在本文件中, 新的光度估计数据集旨在缓解上述许多问题, 帮助进行光度估计研究。 它由4890 张有已知的极度颜色的图像组成, 以及更多的精度数据数据使学习过程更精确。 由于使用SpyderC 的精度目标, 使用这种精度的精度/ 使用, 运行为两种不同的图像测试方法, 进行不同的数据测试, 使用两种不同的图像的精度校样的颜色记录, 使用两种方法可以进行不同的测试。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
5+阅读 · 2018年10月16日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
5+阅读 · 2018年10月16日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员