The Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts have been used in profile monitoring to track drift shifts that occur in a monitored process. We construct Bayesian EWMA and Bayesian CUSUM charts informed by posterior and posterior predictive distributions using different loss functions, prior distributions, and likelihood distributions. A simulation study is performed, and the performance of the charts are evaluated via average run length (ARL), standard deviation of the run length (SDRL), average time to signal (ATS), and standard deviation of time to signal (SDTS). A sensitivity analysis is conducted using choices for the smoothing parameter, out-of-control shift size, and hyper-parameters of the distribution. Based on obtained results, we provide recommendations for use of the Bayesian EWMA and Bayesian CUSUM control charts.
翻译:在监测过程中跟踪漂移变化的剖面监测中使用了指数加权平均移动(EWMA)和累积总和(CUUM)控制图,我们利用不同的损失功能、先前的分布和可能性分布,根据后传和后传预测分布,制作了Bayesian EWMA和Bayesian CUSUM海图,并用平均运行长度(ARL)、运行长度的标准偏差(SDRL)、信号的平均时间(ATS)和信号的标准时间偏差(SDTS)对海图进行了模拟研究,对海图的性能进行了评价,对光滑参数、控制外移动大小和分布的超分数进行了敏感性分析,根据获得的结果,我们建议使用Bayesian EWMA和Bayesian CUSUM控制图。