This paper explores various attack scenarios on a voice anonymization system using embeddings alignment techniques. We use Wasserstein-Procrustes (an algorithm initially designed for unsupervised translation) or Procrustes analysis to match two sets of x-vectors, before and after voice anonymization, to mimic this transformation as a rotation function. We compute the optimal rotation and compare the results of this approximation to the official Voice Privacy Challenge results. We show that a complex system like the baseline of the Voice Privacy Challenge can be approximated by a rotation, estimated using a limited set of x-vectors. This paper studies the space of solutions for voice anonymization within the specific scope of rotations. Rotations being reversible, the proposed method can recover up to 62% of the speaker identities from anonymized embeddings.
翻译:本文探索了使用嵌入式校正技术对声音匿名系统的各种攻击情景。 我们使用瓦瑟斯坦- Procrustes( 最初设计用于不受监督翻译的算法) 或Procrustes 分析来匹配两组 X- Vercors, 在声音匿名之前和之后, 将这种转换模拟为旋转功能。 我们计算了最佳旋转, 并将这一近似结果与官方语音隐私挑战结果进行比较。 我们显示, 类似声音隐私挑战基线的复杂系统可以通过轮换来比较, 估计使用有限的 x- Verctors 组合。 本文研究了在特定旋转范围内语音匿名化的解决方案空间。 旋转是可反转的, 拟议的方法可以从匿名嵌入中恢复62%的语音特性。