A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.


翻译:阶段类型分布是时间的分布,直到吸收到一定的状态- 空间时间- 均匀的 Markov 跳跃过程, 一种吸收状态, 其余的则处于瞬态。 这些分布在数学上是可移动的, 在概念上对模型物理现象具有吸引力, 因为它们以隐藏的 Markov 结构来解释这些现象。 最近三次定期的阶段类型分布的扩展产生了允许重尾的模型: 离散或连续缩放; 分时间半 Markov 扩展; 以及 基本 Markov 过程的不同步时间变化。 在本文中, 我们提出了一个重尾阶段分布的统一理论, 所有三种方法都是特例。 我们的主要目标是为重尾部分布提供有用的模型, 但其它尾部行为也被我们的规格所捕捉到。 我们提供了相关的新示例, 并展示了现有方法是如何自然嵌入的。 随后, 提供了两个多变式扩展, 由不通融的构建过程所启发, 可以被视为脆弱模型的矩阵版本。 我们用合成的EM- 模型和合成模型来充分说明它们。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
29+阅读 · 2021年7月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
已删除
将门创投
7+阅读 · 2018年4月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
29+阅读 · 2021年7月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
已删除
将门创投
7+阅读 · 2018年4月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员