A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.
翻译:阶段类型分布是时间的分布,直到吸收到一定的状态- 空间时间- 均匀的 Markov 跳跃过程, 一种吸收状态, 其余的则处于瞬态。 这些分布在数学上是可移动的, 在概念上对模型物理现象具有吸引力, 因为它们以隐藏的 Markov 结构来解释这些现象。 最近三次定期的阶段类型分布的扩展产生了允许重尾的模型: 离散或连续缩放; 分时间半 Markov 扩展; 以及 基本 Markov 过程的不同步时间变化。 在本文中, 我们提出了一个重尾阶段分布的统一理论, 所有三种方法都是特例。 我们的主要目标是为重尾部分布提供有用的模型, 但其它尾部行为也被我们的规格所捕捉到。 我们提供了相关的新示例, 并展示了现有方法是如何自然嵌入的。 随后, 提供了两个多变式扩展, 由不通融的构建过程所启发, 可以被视为脆弱模型的矩阵版本。 我们用合成的EM- 模型和合成模型来充分说明它们。