The advent of powerful prediction algorithms led to increased automation of high-stake decisions regarding the allocation of scarce resources such as government spending and welfare support. This automation bears the risk of perpetuating unwanted discrimination against vulnerable and historically disadvantaged groups. Research on algorithmic discrimination in computer science and other disciplines developed a plethora of fairness metrics to detect and correct discriminatory algorithms. Drawing on robust sociological and philosophical discourse on distributive justice, we identify the limitations and problematic implications of prominent fairness metrics. We show that metrics implementing equality of opportunity only apply when resource allocations are based on deservingness, but fail when allocations should reflect concerns about egalitarianism, sufficiency, and priority. We argue that by cleanly distinguishing between prediction tasks and decision tasks, research on fair machine learning could take better advantage of the rich literature on distributive justice.


翻译:强大的预测算法的出现导致在分配政府支出和福利支助等稀缺资源方面作出高度决策的自动化程度提高。这种自动化具有使弱势和历史上处于不利地位的群体长期遭受不想要的歧视的风险。关于计算机科学和其他学科的算法歧视的研究发展了大量的公平衡量标准,以发现和纠正歧视性算法。根据关于分配正义的强有力的社会学和哲学论述,我们确定突出的公平衡量标准的局限性和问题影响。我们表明,只有在资源分配以值得为根据时,才适用实现机会平等的指标,但在分配时不能反映对平等主义、充足性和优先地位的关切。我们说,通过明确区分预测任务和决定任务,关于公平机器学习的研究可以更好地利用关于分配正义的丰富文献。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
3+阅读 · 2017年9月12日
Arxiv
0+阅读 · 2021年6月25日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
3+阅读 · 2017年9月12日
Top
微信扫码咨询专知VIP会员