Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multimodal examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time proposes an end-to-end solution from multiple video recordings of each subject with a dataset encapsulating stroke, transient ischemic attack (TIA), and healthy controls. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected StrokeDATA dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with 93.62% sensitivity and 95.33% AUC score.


翻译:中风是全球致死率和残疾率的主要原因之一,四人中就有一人有可能在其一生中遭遇中风。院前中风评估在准确识别中风患者以加速后续诊断和治疗方面起着至关重要的作用。因此,全球知名的中风评估测试国家卫生研究院中风量表(NIHSS),辛辛那提院前中风量表(CPSS)和面部、手臂、语言、时间测试(F.A.S.T.)等试验的有效性在缺少神经学家的情况下存在怀疑。因此,在本研究中,我们提出了一种基于运动感知和多注意融合网络(MAMAF-Net)的方法,可以从多模态检查视频中检测中风。与分析视频的其他中风检测研究相反,我们的研究首次提出了一种从每个受试者的多个视频记录中进行端到端解决方案,数据集包含中风、短暂性脑缺血发作(TIA)和健康控制。所提出的MAMAF-Net由运动感知模块、注意力融合模块和3D卷积层组成,以从基于注意力提取的特征进行诊断。对收集的StrokeDATA数据集进行的实验结果显示,所提出的MAMAF-Net以93.62%的灵敏度和95.33%的AUC得分成功检测了中风。

0
下载
关闭预览

相关内容

【MIT-AI+医学课程】面向生命科学的深度学习课程
专知会员服务
47+阅读 · 2022年4月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年3月31日
VIP会员
相关VIP内容
【MIT-AI+医学课程】面向生命科学的深度学习课程
专知会员服务
47+阅读 · 2022年4月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员