This paper investigates the failure cases and out-of-distribution behavior of transformers trained on matrix inversion and eigenvalue decomposition. I show that incorrect model predictions still retain deep mathematical properties of the solution (e.g. correct eigenvalues, unit norm of eigenvectors), and that almost all model failures can be attributed to, and predicted from, properties of the problem or solution. This demonstrates that, when in doubt, math transformers do not hallucinate absurd solutions (as was sometimes proposed) but remain ``roughly right''. I also show that the careful choice of a training dataset can accelerate training, while allowing the model to generalize out of its training distribution, invalidating the idea that transformers ``merely interpolate'' from memorized examples.
翻译:本文调查了在矩阵反转和乙基值分解方面受过训练的变压器的故障案例和分配失常行为。我表明,不正确的模型预测仍然保留了解决方案的深层数学特性(例如正确的乙基值、机精元的单位规范),几乎所有模型失败都可以归因于问题或解决办法的特性并从中预测出来。这表明,在有疑问时,数学变压器不会产生幻觉的荒谬解决方案(有时会提出这种解决方案),但“基本正确 ” 。我还表明,谨慎选择培训数据集可以加快培训速度,同时允许模型将其培训分布归纳出来,从而否定了变压器“仅仅从记忆中套出”的想法。