We develop methodology for estimation and inference using machine learning to enrich economic models. Our framework takes a standard economic model and recasts the parameters as fully flexible nonparametric functions, to capture the rich heterogeneity based on potentially high dimensional or complex observable characteristics. These "parameter functions" retain the interpretability, economic meaning, and discipline of classical parameters. Deep learning is particularly well-suited to structured modeling of heterogeneity in economics. We show how to design the network architecture to match the structure of the economic model, delivering novel methodology that moves deep learning beyond prediction. We prove convergence rates for the estimated parameter functions. These functions are the key inputs into the finite-dimensional parameter of inferential interest. We obtain inference based on a novel influence function calculation that covers any second-stage parameter and any machine-learning-enriched model that uses a smooth per-observation loss function. No additional derivations are required. The score can be taken directly to data, using automatic differentiation if needed. The researcher need only define the original model and define the parameter of interest. A key insight is that we need not write down the influence function in order to evaluate it on the data. Our framework gives new results for a host of contexts, covering such diverse examples as price elasticities, willingness-to-pay, and surplus measures in binary or multinomial choice models, effects of continuous treatment variables, fractional outcome models, count data, heterogeneous production functions, and more. We apply our methodology to a large scale advertising experiment for short-term loans. We show how economically meaningful estimates and inferences can be made that would be unavailable without our results.


翻译:我们开发了利用机器学习来丰富经济模型的估算和推断方法。 我们的框架使用一个标准的经济模型, 并将参数重新定位为完全灵活的非参数性非参数功能, 以捕捉基于潜在高度或复杂的可观测特征的丰富异质性。 这些“ 参数性功能” 保留了古典参数的可解释性、 经济意义和纪律。 深层次的学习特别适合于经济差异性的结构建模。 我们展示了如何设计网络架构以适应经济模型的结构, 提供了超越预测的深层次学习的新方法。 我们证明了估计参数功能的趋同率。 这些功能是用于推断兴趣的有限维度参数的关键投入。 我们根据一种新颖的影响函数获得推论, 包括任何第二阶段参数和任何机读丰富的模型, 使用平坦度的观察损失功能。 我们不需要额外的推算。 我们的评分可以直接用于数据, 必要时使用自动分。 研究人员只需要定义原始模型, 并定义利息的参数。 这些函数是应用的有限性参数。 我们的关键理解是, 我们不需要将数据格式写成一个不连续的数据格式, 我们的模型, 来显示我们的数据格式的排序的模型 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2021年2月18日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
49+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2021年2月18日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员