Objective measurement of perceptually motivated music attributes has application in both target driven mixing and mastering methodologies and music information retrieval. This work proposes a perceptual model of mix clarity which decomposes a mixed input signal into transient, steady-state, and residual components. Masking thresholds are calculated for each component and their relative relationship is used to determine an overall masking score as the model's output. Three variants of the model were tested against subjective mix clarity scores gathered from a controlled listening test. The best performing variant achieved a Spearman's rank correlation of rho = 0.8382 (p<0.01). Furthermore, the model output was analysed using an independent dataset generated by progressively applying degradation effects to the test stimuli. Analysis of the model suggested a close relationship between the proposed model and the subjective mix clarity scores particularly when masking was measured using linearly spaced analysis bands. Moreover, the presence of noise-like residual signals was shown to have a negative effect on the perceived mix clarity.


翻译:在目标驱动混合和掌握方法以及音乐信息检索方面,对感知性音乐属性的客观计量都适用目标驱动的混合和掌握方法以及音乐信息检索。这项工作提出了一个混合清晰度概念模型,将混合输入信号分解成瞬态、稳定状态和剩余组成部分。为每个组成部分计算了遮盖阈值,并使用它们的相对关系来确定模型产出的总体遮盖分数。模型的三个变式是对照从受控监听测试中收集的主观混合清晰分数测试的。最佳变式实现了Spearman的rho = 0.8382(p < 0.01)。此外,模型产出是使用通过对测试刺激因素逐步应用降解效应产生的独立数据集分析的。模型分析表明,拟议的模型与主观混合清晰度分数之间有着密切的关系,特别是在使用线性空间分析波段测量遮盖值时。此外,有类似噪音的残余信号的存在对所感觉到的混合清晰度产生了负面影响。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月13日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Arxiv
8+阅读 · 2018年5月21日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员