We are interested in the intersection of approximation algorithms and complexity theory, in particular focusing on the complexity class APX. Informally, APX $\subseteq$ NPO is the complexity class comprising optimization problems where the ratio $\frac{OPT(I)}{ALG(I)} \leq c$ for all instances I. We will do a deep dive into studying APX as a complexity class, in particular, investigating how researchers have defined PTAS and L reductions, as well as the notion of APX-completeness, thereby clarifying where APX lies on the polynomial hierarchy. We will discuss the relationship of this class with FPTAS, PTAS, APX, log-APX and poly-APX). We will sketch the proof that Max 3-SAT is APX-hard, and compare this complexity class in relation to $BPP$, $ZPP$ to elucidate whether randomization is powerful enough to achieve certain approximation guarantees and introduce techniques that complement the design of approximation algorithms such as through \textit{primal-dual} analysis, \textit{local search} and \textit{semi-definite programming}. Through the PCP theorem, we will explore the fundamental relationship between hardness of approximation and randomness, and will recast the way we look at the complexity class NP. We will finish by looking at the \textit{"real world"} applications of this material in Economics. Finally, we will touch upon recent breakthroughs in the Metric Travelling Salesman and asymmetric travelling salesman problem, as well original directions for future research, such as quantifying the amount of additional compute power that access to an APX oracle provides, elucidating fundamental combinatorial properties of log-APX problems and unique ways to attack the problem of whether the minimum set-cover problem is self-improvable.


翻译:我们感兴趣的是近似算法和复杂理论的交叉点, 特别是侧重于复杂等级 APX。 非正式地说, APX$\subseceteq$NPO 是复杂类别, 包括优化问题, 其中比率为$\frac{OPT(I)\ ⁇ ALG(I)}\leq c$(leq c$), 对于所有情况都是如此。 我们将深入潜伏研究APX作为一个复杂类别, 特别是研究研究人员如何定义了PTAS和L减少, 以及APX完整性的概念, 从而澄清APX在多元等级中的位置。 我们将讨论这一类与FPTAS, PTAS, APS, APX, AS- APX 和 APAX APX 的优化问题。 我们将勾画一个证明 Max 3SAT 是APX 的硬值, 并且将这一复杂类别 的随机值 问题 用来实现某些近似性的保证, 并引入一些技术, 比如 Expilticlealalalalalalalalal ex liversalal liversal liversal deal liversationslation ex ex ex ex ex, 我们将会通过这种原始搜索搜索搜索 和原始的 和原始的 lives

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2021年3月24日
Arxiv
24+阅读 · 2020年3月11日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员