Hindsight Experience Replay (HER) is a multi-goal reinforcement learning algorithm for sparse reward functions. The algorithm treats every failure as a success for an alternative (virtual) goal that has been achieved in the episode. Virtual goals are randomly selected, irrespective of which are most instructive for the agent. In this paper, we present two improvements over the existing HER algorithm. First, we prioritize virtual goals from which the agent will learn more valuable information. We call this property the instructiveness of the virtual goal and define it by a heuristic measure, which expresses how well the agent will be able to generalize from that virtual goal to actual goals. Secondly, we reduce existing bias in HER by the removal of misleading samples. To test our algorithms, we built two challenging environments with sparse reward functions. Our empirical results in both environments show vast improvement in the final success rate and sample efficiency when compared to the original HER algorithm. A video showing experimental results is available at https://youtu.be/3cZwfK8Nfps .
翻译:事后观察重现(HER) 是一种用于稀有报酬功能的多目标强化学习算法。 算法将每个失败都视为成功, 以达到在这一集中已经实现的替代( 虚拟) 目标。 虚拟目标是随机选择的, 不论对代理最有启发性。 在本文中, 我们展示了两个比现有的 HER 算法更好的改进。 首先, 我们将虚拟目标优先排序, 代理商从中学习更有价值的信息。 我们把这个属性称为虚拟目标的启发性, 并通过超常度测量来定义它, 这表示代理商能够从虚拟目标向实际目标概括到实际目标。 其次, 我们通过移除误导样本来减少她现有的偏差。 为了测试我们的算法, 我们建立了两个充满挑战性的环境, 且奖励功能稀少。 我们两个环境中的经验结果表明, 最终成功率和样本效率与最初的HER 算法相比都有很大改进。 显示实验结果的视频可在 https://youtu.be/3cZwK8Nfps 上查阅 。