The classical binary hypothesis testing problem is revisited. We notice that when one of the hypotheses is composite, there is an inherent difficulty in defining an optimality criterion that is both informative and well-justified. For testing in the simple normal location problem (that is, testing for the mean of multivariate Gaussians), we overcome the difficulty as follows. In this problem there exists a natural hardness order between parameters as for different parameters the error-probailities curves (when the parameter is known) are either identical, or one dominates the other. We can thus define minimax performance as the worst-case among parameters which are below some hardness level. Fortunately, there exists a universal minimax test, in the sense that it is minimax for all hardness levels simultaneously. Under this criterion we also find the optimal test for composite hypothesis testing with training data. This criterion extends to the wide class of local asymptotic normal models, in an asymptotic sense where the approximation of the error probabilities is additive. Since we have the asymptotically optimal tests for composite hypothesis testing with and without training data, we quantify the loss of universality and gain of training data for these models.
翻译:古典的二元假设测试问题被重新研究。 我们注意到, 当一种假设是复合的, 很难确定一个既信息丰富又合理的最佳性标准。 对于简单普通位置问题的测试( 测试多变高斯值平均值), 我们克服了以下困难。 在这个问题中, 参数与不同参数存在自然的硬度顺序, 错误- 概率曲线( 当参数已知时) 是相同的, 或是一个主宰另一个。 因此, 我们可以将微缩性能定义为低于某些硬度水平的参数中最坏的。 幸运的是, 存在一种通用的微缩性能测试, 即它同时是所有硬度水平的迷你式测试。 在这个标准下, 我们还找到用培训数据测试综合假设的最佳测试。 这个标准延伸到局部的低位正常模型, 在一种微感应感感中, 错误概率的近似性是补充性的。 由于我们掌握了综合假设测试的最优性测试, 并且没有培训数据, 我们量化了这些数据的普遍性和损失。