This research was mainly conducted to explore the possibility of formulating an efficient algorithm to find roots of nonlinear equations without using the derivative of the function. The Weerakoon-Fernando method had been taken as the base in this project to find a new method without the derivative since Weerakoon-Fernando method gives 3rd order convergence. After several unsuccessful attempts we were able to formulate the Finite Difference Weerakoon-Fernando Method (FDWFM) presented here. We noticed that the FDWFM approaches the root faster than any other existing method in the absence of the derivatives as an example, the popular nonlinear equation solver such as secant method (order of convergence is 1.618) in the absence of the derivative. And the FDWFM had three function evaluations and secant method had two function evaluations. By implementing FDWFM on nonlinear equations with complex roots and also on systems of nonlinear equations, we received very encouraging results. When applying the FDWFM to systems of nonlinear equations, we resolved the involvement of the Jacobian problem by following the procedure in the Broyden's method. The computational order of convergence of the FDWFM was close to 2.5 for all these cases. This will undoubtedly provide scientists the efficient numerical algorithm, that doesn't need the derivative of the function to solve nonlinear equations, that they were searching for over centuries.


翻译:此项研究主要是为了探索制定有效算法以找到非线性方程式根部而不使用函数衍生物的可能性。 Weerakoon-Fernando方法被作为这个项目的基础,以寻找一种没有衍生物的新方法,因为Weerakoon-Fernando方法提供了第3顺序趋同。经过几次尝试,我们得以在此提出Finite Coide Weerakoon-Fernando方法(FDWMM),结果不成功。我们注意到,FDFFFFFFMM方法在没有衍生物的情况下比任何其他现有方法更快地接近根部根部。在没有衍生物的情况下,将流行的非线性非线性方程式解解解解解,如松动法方法(趋同顺序为1.618)。FDFMM方法有三种功能评价和松动法方法有两种功能评价。我们通过在具有复杂根基的非线性方程式和非线性方程式上执行FDFDFFFMMM方法,我们得到了非常鼓舞的结果。在将FFFFFFFFMM系统应用非线性方方程式系统时,我们解决了Jacoblogian问题的非线性解非线性方程式问题,我们通过接近了非线性方程式的解法化法化法化法化法化法化法化法化法化法化法化法化方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员