Due to the difficulty in collecting paired real-world training data, image deraining is currently dominated by supervised learning with synthesized data generated by e.g., Photoshop rendering. However, the generalization to real rainy scenes is usually limited due to the gap between synthetic and real-world data. In this paper, we first statistically explore why the supervised deraining models cannot generalize well to real rainy cases, and find the substantial difference of synthetic and real rainy data. Inspired by our studies, we propose to remove rain by learning favorable deraining representations from other connected tasks. In connected tasks, the label for real data can be easily obtained. Hence, our core idea is to learn representations from real data through task transfer to improve deraining generalization. We thus term our learning strategy as \textit{task transfer learning}. If there are more than one connected tasks, we propose to reduce model size by knowledge distillation. The pretrained models for the connected tasks are treated as teachers, all their knowledge is distilled to a student network, so that we reduce the model size, meanwhile preserve effective prior representations from all the connected tasks. At last, the student network is fine-tuned with minority of paired synthetic rainy data to guide the pretrained prior representations to remove rain. Extensive experiments demonstrate that proposed task transfer learning strategy is surprisingly successful and compares favorably with state-of-the-art supervised learning methods and apparently surpass other semi-supervised deraining methods on synthetic data. Particularly, it shows superior generalization over them to real-world scenes.
翻译:由于难以收集成对真实世界的培训数据,图像脱线目前主要通过监督学习,学习综合数据,例如,照片显示。然而,由于合成数据与真实世界数据之间的差距,对真实雨景的概括化通常有限。在本文中,我们首先从统计角度探讨为什么受监督的脱线模型无法将信息概括为真正的雨量案例,并发现合成数据和真正的雨量数据之间的巨大差异。在我们的研究的启发下,我们提议通过学习其他相关任务中有利的脱线表示来消除雨水。在相关任务中,真实数据的标签很容易获得。因此,我们的核心理念是通过任务转移来从真实数据中学习真实的描述,从而改进脱光度的概括化数据。因此,我们把我们的学习战略称为\textit{task转移学习 学习 }。如果存在不止一项相互关联的任务,我们建议通过知识蒸馏来降低模型的大小。受预先训练后,有关任务的模型被作为教师处理,其所有知识都被淡化为学生网络,因此我们可以降低模型的大小,同时保存真实数据标签,同时保留前的准确的缩缩缩缩缩缩版。同时,通过任务前的缩缩缩缩缩缩缩缩缩缩缩缩版, 将前的缩略图表, 将所有的缩缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩略图图面图面图, 与所有的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版的缩版式式式式式式式式式的缩版的缩版式式式式式式式式式式式式式式式式式式式式的缩版式式式式的缩版式的缩版式的缩式, 和缩式的缩版式的缩版式的缩版式的缩版式的缩版式的缩版式的缩版式的缩版式式式式式式的缩