Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios.


翻译:神经网络分类器在预测他们经过培训确定的投入类别时,具有很高的准确性。在动态环境中保持这种准确性,因为输入往往不属于固定的、最初已知的类别,这仍然是一个挑战。典型的方法是检测新类的投入,对分类器进行再培训,以强化数据集。然而,不仅分类器,而且检测机制也需要进行调整,以区分新学和未知的投入类别。为了应对这一挑战,我们引入了积极监测神经网络的算法框架。我们框架包装的监视器与神经网络平行运行,并通过一系列可解释的关于渐进适应的标签查询与人类用户互动。此外,我们提议采用适应性数量监测器来提高精确度。对不同类别的各种基准进行实验性评估,证实了我们在动态情景下积极监测框架的好处。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
37+阅读 · 2021年4月27日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年3月30日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月27日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员