We establish higher-order expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry--Esseen inequalities under very general conditions. For symmetrically distributed random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The proposed results include also explicit error bounds for general elliptical confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls.
翻译:我们设置了更高层次的扩展, 以区分在 uclidean 空间内 i.d. 随机矢量的概率分布。 衍生的边框在两种类型的组合中是统一的: 全部的 Euclidean 球和所有半空的一组。 这些结果可以说明更高层次的瞬间或考虑分布的积聚的影响; 获得的误差条件取决于抽样大小和明确的维度。 在非常一般的条件下, 新的不平等性优于现有Berry- Esseen 近似正常近似的准确性。 对于对称分布随机的随机总和, 所获得的结果在尺寸和样本大小之间的比例方面是最佳的。 使用新的更高层次的不平等性, 我们研究非参数性靴杆近似的准确性, 并提议在可能的模型错误特性下进行靴带评分测试。 提议的结果还包括: 普通椭模信任区对于随机和所有Euclidean 球组合的预期值, 以及高斯的抗力不平等性最佳性。