Linear logic (LL) has inspired the design of many computational systems, offering reasoning techniques built on top of its meta-theory. Since its inception, several connections between concurrent systems and LL have emerged from different perspectives. In the last decade, the seminal work of Caires and Pfenning showed that formulas in LL can be interpreted as session types and processes in the $\pi$-calculus as proof terms. This leads to a Curry-Howard interpretation where proof reductions in the cut-elimination procedure correspond to process reductions/interactions. The subexponentials in LL have also played an important role in concurrent systems since they can be interpreted in different ways, including timed, spatial and even epistemic modalities in distributed systems. In this paper we address the question: What is the meaning of the subexponentials from the point of view of a session type interpretation? Our answer is a $\pi$-like process calculus where agents reside in locations/sites and they make it explicit how the communication among the different sites should happen. The design of this language relies completely on the proof theory of the subexponentials in LL, thus extending the Caires-Pfenning interpretation in an elegant way.


翻译:线性逻辑( LL) 启发了许多计算系统的设计, 提供了在其元理论之上建立的推理技术。 自其诞生以来, 并行系统和LL之间的若干连接从不同的角度出现了。 在过去的十年中, Caires 和 Pfenning 的开创性工作表明, LL 中的公式可以被解释为会话类型和过程, $\ pi$- calculus 中的会话和过程, 作为证明条件 。 这导致一个咖喱- 豪尔德解释, 削减程序的证明减少与过程的减少/ 互动相对应。 LL 的子化在同时系统也发挥了重要作用, 因为它们可以以不同的方式加以解释, 包括时间、 空间甚至分布式系统中的缩略式模式 。 在本文中, 我们讨论的问题是: 从会话类型解释的角度看, 子化解释的含义是什么? 我们的答案是一个 $\ pipi$- sy- sloglules 这样的过程, 代理方位于地点/ 地点, 并且它们明确了不同地点之间的沟通方式。 这个语言的设计完全依赖了LI- prifirial- lavial sultal 的理论。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员