Interactions among humans on social media often convey intentions behind their actions, yielding a psychological language resource for Mental Health Analysis (MHA) of online users. The success of Computational Intelligence Techniques (CIT) for inferring mental illness from such social media resources points to NLP as a lens for causal analysis and perception mining. However, we argue that more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. To bridge this gap, we posit two significant dimensions: (1) Causal analysis to illustrate a cause and effect relationship in the user generated text; (2) Perception mining to infer psychological perspectives of social effects on online users intentions. Within the scope of Natural Language Processing (NLP), we further explore critical areas of inquiry associated with these two dimensions, specifically through recent advancements in discourse analysis. This position paper guides the community to explore solutions in this space and advance the state of practice in developing conversational agents for inferring mental health from social media. We advocate for a more explainable approach toward modeling computational psychology problems through the lens of language as we observe an increased number of research contributions in dataset and problem formulation for causal relation extraction and perception enhancements while inferring mental states.
翻译:人类在社交媒体上的相互作用往往传达行动背后的意图,为在线用户的心理健康分析(MHA)提供心理语言资源,为在线用户的心理健康分析(MHA)提供心理语言资源。计算情报技术(CIT)从社交媒体资源中推断精神疾病的成功表明,国家语言实验室作为因果分析和认知挖掘的透镜,认为需要进行更具有影响和解释性的研究,以便对临床心理学实践和个人心理保健产生最佳影响。为了缩小这一差距,我们提出两个重要方面:(1) 进行因果关系分析,以说明用户生成的文本中的原因和影响关系;(2) 进行认知挖掘,以推断社会对在线用户意图的影响的心理观点。在自然语言处理(NLP)范围内,我们进一步探索与这两个层面相关的关键调查领域,特别是通过最近对讨论分析的进展。本立场文件指导社区探索这一空间的解决方案,并推进从社会媒体中建立判断心理健康的谈话媒介的做法。我们主张通过语言透镜来更解释计算心理学问题的模型,因为我们观察了在增强和构建因果关系方面的研究贡献的数量。