Traditional federated learning algorithms impose strict requirements on the participation rates of devices, which limit the potential reach of federated learning. This paper extends the current learning paradigm to include devices that may become inactive, compute incomplete updates, and depart or arrive in the middle of training. We derive analytical results to illustrate how allowing more flexible device participation can affect the learning convergence when data is not independently and identically distributed (non-IID). We then propose a new federated aggregation scheme that converges even when devices may be inactive or return incomplete updates. We also study how the learning process can adapt to early departures or late arrivals, and analyze their impacts on the convergence.
翻译:传统联邦学习算法对各种设备的参与率规定了严格的要求,从而限制了联合学习的潜在范围。本文件扩展了目前的学习模式,包括可能变得不活动、计算不完全更新以及离开或到达培训中间的装置。我们得出分析结果,以说明在数据不独立和同样分布(非IID)的情况下,允许更灵活的设备参与会如何影响学习的趋同。然后我们提出一个新的联合汇总计划,即使装置可能不活跃或返回不完全更新时,也会汇集起来。我们还研究学习过程如何适应早期出发或晚到者,并分析其对融合的影响。