The paper proposes a quantum algorithm for the traveling salesman problem (TSP) based on the Grover Adaptive Search (GAS), which can be successfully executed on IBM's Qiskit library. Under the GAS framework, there are at least two fundamental difficulties that limit the application of quantum algorithms for combinatorial optimization problems. One difficulty is that the solutions given by the quantum algorithms may not be feasible. The other difficulty is that the number of qubits of current quantum computers is still very limited, and it cannot meet the minimum requirements for the number of qubits required by the algorithm. In response to the above difficulties, we designed and improved the Hamiltonian Cycle Detection (HCD) oracle based on mathematical theorems. It can automatically eliminate infeasible solutions during the execution of the algorithm. On the other hand, we design an anchor register strategy to save the usage of qubits. The strategy fully considers the reversibility requirement of quantum computing, overcoming the difficulty that the used qubits cannot be simply overwritten or released. As a result, we successfully implemented the numerical solution to TSP on IBM's Qiskit. For the seven-node TSP, we only need 31 qubits, and the success rate in obtaining the optimal solution is 86.71%.


翻译:本文基于 Grover 适应性搜索( GAS) 提出了一个旅行销售员问题量子算法( TSP), 这个算法可以在 IBM 的 Qiskit 库中成功执行。 在 GAS 框架下, 至少有两个基本困难限制对组合优化问题应用量子算法。 一个困难是量子算法给出的解决方案可能不可行。 另一个困难是, 当前量子计算机的量子计算机数量仍然非常有限, 无法满足算法所要求的量子数量的最低要求。 为了应对上述困难, 我们设计并改进了基于数学理论的汉密尔顿周期检测( HCD) 。 它可以在算法执行期间自动消除不可行的解决方案。 另一方面, 我们设计了一个固定注册策略以节省qubts的使用。 战略充分审议了量子计算可逆性要求, 克服了使用量子计算不能简单地过错或释放的难度。 作为结果, 我们成功地实施了基于数学理论理论理论的 TSP 和 IBM 7 标准的TSP 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员