Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks. Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages. Thus, it is critical to improving performance in a multilingual setting. Meanwhile, multilingual training is usually used to boost cross-lingual performance by transferring knowledge from languages (e.g., high-resource) to other (e.g., low-resource) languages. However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages. In this paper, we propose a two-stage multilingual training method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages. Specifically, we randomly concatenate sentences in different languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation. Then, we separate parameters to mitigate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific feature representation. After that, to enhance the relational triple extraction, the sentence representations concatenated with the relation feature are used to recognize the entities. Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods. Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE{} is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.


翻译:在信息提取中,实体和关系提取是一项关键任务,其产出可用于下游国家语言定位任务。实体和关系提取任务的现有方法主要侧重于英语公司,忽视其他语言。因此,这对于提高多语种环境中的绩效至关重要。与此同时,多语种培训通常用于通过将知识从语言(例如高资源)转移到其他语言(例如低资源)来提高跨语言的绩效。然而,语言干扰通常存在于多语种任务中,因为所有语言都共享了示范参数。在本文件中,我们提出了两阶段多语种培训方法和联合模型,称为多语言实体和Relation Mistricle框架(mRE),以减少跨语言干扰。具体地说,我们随机地将不同语言的句子组合起来,以培训语言通用聚合器(LA),通过获得统一的语言代表方式缩小了嵌入代表的距离。然后,我们通过调整特定语言切换标准(LS),包括若干独立的分模块,以完善语言区分具体语言特征的配置关系。之后,我们又将快速的里程(malimal-lementalimal legrational lemental laction) 也展示了我们使用的多语种模式的模型,以展示了我们所使用的基础分析结果。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员