We consider the problem of service hosting where an application provider can dynamically rent edge computing resources and serve user requests from the edge to deliver a better quality of service. A key novelty of this work is that we allow the service to be hosted partially at the edge which enables a fraction of the user query to be served by the edge. We model the total cost for (partially) hosting a service at the edge as a combination of the latency in serving requests, the bandwidth consumption, and the time-varying cost for renting edge resources. We propose an online policy called $\alpha$-RetroRenting ($\alpha$-RR) which dynamically determines the fraction of the service to be hosted at the edge in any time-slot, based on the history of the request arrivals and the rent cost sequence. As our main result, we derive an upper bound on $\alpha$-RR's competitive ratio with respect to the offline optimal policy that knows the entire request arrival and rent cost sequence in advance. We conduct extensive numerical evaluations to compare the performance of $\alpha$-RR with various benchmarks for synthetic and trace-based request arrival and rent cost processes, and find several parameter regimes where $\alpha$-RR's ability to store the service partially greatly improves cost-efficiency.


翻译:我们考虑了服务托管问题,即应用程序提供商可在其中动态租赁边缘计算资源,并为边缘用户请求提供服务,以提供更好的服务质量。这项工作的一个重要新颖之处是,我们允许在边缘部分托管服务,使用户查询的一小部分能够由边缘服务。我们将(部分)在边缘托管服务的总成本作为在服务请求、带宽消耗和租赁边缘资源的时间分配成本之间的延迟结合,作为在服务请求、带宽消耗和租赁资源的时间分配成本的离线最佳政策的一个模型。我们提出了一个名为$alpha$-retroenting (alpha$-RRR)的在线政策,以动态方式决定服务在任何时间段边缘的端端的服务份额,根据抵达请求的历史和租金顺序。我们的主要结果是,我们根据美元-RR的竞争性比率,在了解整个请求抵达和租赁成本序列的离线最佳政策方面,我们进行了广泛的数字评估,将美元-RR的绩效与各种基于合成和痕量要求效率的费率参数比。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Artificial Intelligence in Open Radio Access Network
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员