The basic load balancing scenario involves a single dispatcher where tasks arrive that must immediately be forwarded to one of $N$ single-server queues. We discuss recent advances on scalable load balancing schemes which provide favorable delay performance when $N$ grows large, and yet only require minimal implementation overhead. Join-the-Shortest-Queue (JSQ) yields vanishing delays as $N$ grows large, as in a centralized queueing arrangement, but involves a prohibitive communication burden. In contrast, power-of-$d$ or JSQ($d$) schemes that assign an incoming task to a server with the shortest queue among $d$ servers selected uniformly at random require little communication, but lead to constant delays. In order to examine this fundamental trade-off between delay performance and implementation overhead, we consider JSQ($d(N)$) schemes where the diversity parameter $d(N)$ depends on $N$ and investigate what growth rate of $d(N)$ is required to asymptotically match the optimal JSQ performance on fluid and diffusion scale. Stochastic coupling techniques and stochastic-process limits play an instrumental role in establishing the asymptotic optimality. We demonstrate how this methodology carries over to infinite-server settings, finite buffers, multiple dispatchers, servers arranged on graph topologies, and token-based load balancing including the popular Join-the-Idle-Queue (JIQ) scheme. In this way we provide a broad overview of the many recent advances in the field. This survey extends the short review presented at ICM 2018 (arXiv:1712.08555).


翻译:基本的负负平衡情景涉及一个单一的调度员,任务抵达时必须立即将任务发送到一个美元单服务器队列中。我们讨论的是,当美元大幅增长,但只需要最低的执行管理费,能够提供有利的延迟性效绩的可伸缩负负负负负平衡计划方面的最新进展。 与集中的排队安排一样,当美元大幅增长时,加入Shorest-Que(JSQ)就会产生消失的延误,但涉及令人望而却步的通信负担。相比之下,美元力量或JSQ($d$)计划将即将到来的任务指派给一个服务器,该服务器在随机选择的美元宽度服务器中排成最短的队列,只需要少量的通信,但导致不断的延误。 为了检查延迟性业绩与执行间接费用之间的这一基本平衡,我们考虑JSQ($(N)计划)计划随着美元的增长而消失,就像集中的排队排队安排一样,但调查需要多少美元基(N)才能在流量和扩散规模上达到最佳JSQ($)的进度。 托·Q(我们从最近调调调调调的汇率技术, 和不断推进的Silal-rol-roder-rol-roder-rol-roup ) 将这个方法作为我们在最优化的实地展示的策略上展示一个工具。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员