This paper presents Macquarie University's participation to the two most recent BioASQ Synergy Tasks (as per June 2022), and to the BioASQ10 Task~B (BioASQ10b), Phase~B. In these tasks, participating systems are expected to generate complex answers to biomedical questions, where the answers may contain more than one sentence. We apply query-focused extractive summarisation techniques. In particular, we follow a sentence classification-based approach that scores each candidate sentence associated to a question, and the $n$ highest-scoring sentences are returned as the answer. The Synergy Task corresponds to an end-to-end system that requires document selection, snippet selection, and finding the final answer, but it has very limited training data. For the Synergy task, we selected the candidate sentences following two phases: document retrieval and snippet retrieval, and the final answer was found by using a DistilBERT/ALBERT classifier that had been trained on the training data of BioASQ9b. Document retrieval was achieved as a standard search over the CORD-19 data using the search API provided by the BioASQ organisers, and snippet retrieval was achieved by re-ranking the sentences of the top retrieved documents, using the cosine similarity of the question and candidate sentence. We observed that vectors represented via sBERT have an edge over tf.idf. BioASQ10b Phase B focuses on finding the specific answers to biomedical questions. For this task, we followed a data-centric approach. We hypothesised that the training data of the first BioASQ years might be biased and we experimented with different subsets of the training data. We observed an improvement of results when the system was trained on the second half of the BioASQ10b training data.
翻译:本文介绍Macquarrie大学参与两个最新的BioASQ协同任务(截至2022年6月2022日)和BioASQ10Tlex~B(BioASQ10b),阶段~B的参与情况。在这些任务中,参与系统预计将对生物医学问题产生复杂的答案,而答案可能包含不止一个句子。我们应用了以询问为重点的抽取性总结技术。特别是,我们采用了基于判决分类的方法,对与问题相关的每个候选句子进行分数分解,然后将美元最高比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值法计算法计算法 方法, 检索任务比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值法的计算法计算法计算法计算法的计算法计算法的计算法 方法 方法 方法 方法的计算法计算法 方法 方法 方法的比值比值比值比值比值比值比值比值方法 方法 方法方法方法方法方法 方法方法方法方法方法方法方法 方法方法方法方法方法方法方法方法方法方法方法方法 和比值方法 和比值方法 和比值比值方法 和比值方法的比值比值和比值方法 和比值比值比值比值比值比值比值比值比值比值比值比值比值比值都值都都都都值都值都值方法 的比值都值方法 的比值都值都值都值都值都值都值都值都值 数据都值方法 数据都都都值都值都都都值都值都都都都都都都都值都值 的比值都值都值都值都值 数据 的比值都值