We propose Weibull delegate racing (WDR) to explicitly model surviving under competing events and to interpret how the covariates accelerate or decelerate the event time. It explains non-monotonic covariate effects by racing a potentially infinite number of sub-events, and consequently relaxes the ubiquitous proportional-hazards assumption which may be too restrictive. For inference, we develop a Gibbs-sampler-based MCMC algorithm along with maximum a posteriori estimations for big data applications. We analyze time to loan payoff and default on Prosper.com, demonstrating not only a distinguished performance of WDR, but also the value of standard and soft information.


翻译:我们建议Weibull代表赛(WDR)明确模拟在竞争事件下生存的模型,并解释共变加速或减慢事件时间的方式。它解释了通过赛跑潜在无限数量的次活动产生的非单调共变效应,从而放松了可能限制性过强的无处不在的按比例危害假设。据推测,我们开发了一个基于 Gibbs-ampler 的MCMC 算法,同时对大数据应用进行了最大事后估计。我们分析了在Prosper.com 上借出偿还和违约的时间,不仅证明了WDR的杰出表现,而且证明了标准信息和软信息的价值。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2015年9月14日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员