We propose Weibull delegate racing (WDR) to explicitly model surviving under competing events and to interpret how the covariates accelerate or decelerate the event time. It explains non-monotonic covariate effects by racing a potentially infinite number of sub-events, and consequently relaxes the ubiquitous proportional-hazards assumption which may be too restrictive. For inference, we develop a Gibbs-sampler-based MCMC algorithm along with maximum a posteriori estimations for big data applications. We analyze time to loan payoff and default on Prosper.com, demonstrating not only a distinguished performance of WDR, but also the value of standard and soft information.
翻译:我们建议Weibull代表赛(WDR)明确模拟在竞争事件下生存的模型,并解释共变加速或减慢事件时间的方式。它解释了通过赛跑潜在无限数量的次活动产生的非单调共变效应,从而放松了可能限制性过强的无处不在的按比例危害假设。据推测,我们开发了一个基于 Gibbs-ampler 的MCMC 算法,同时对大数据应用进行了最大事后估计。我们分析了在Prosper.com 上借出偿还和违约的时间,不仅证明了WDR的杰出表现,而且证明了标准信息和软信息的价值。