Image composition plays a common but important role in photo editing. To acquire photo-realistic composite images, one must adjust the appearance and visual style of the foreground to be compatible with the background. Existing deep learning methods for harmonizing composite images directly learn an image mapping network from the composite to the real one, without explicit exploration on visual style consistency between the background and the foreground images. To ensure the visual style consistency between the foreground and the background, in this paper, we treat image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets show the superior capability of the proposed method. Code is available at {https://github.com/junleen/RainNet}.
翻译:在照片编辑中,图像的构成具有共同但重要的作用。 要获取照片现实的合成图像, 就必须调整前景的外观和视觉风格, 使其与背景相容。 现有的将复合图像从复合图像直接学习到真实图像绘制网络, 不对背景和前景图像之间的视觉风格一致性进行明确探索。 为确保前景和背景之间的视觉风格一致性, 本文将图像统一视为风格传输问题。 特别是, 我们提议了一个简单而有效的区域觉适应性常态模块, 明确从背景中绘制视觉样式, 并适应地将其应用到前景。 在我们的设置下, 我们的 RAIN 模块可以用作现有图像统一网络的投放模块, 并能够带来显著的改进。 对现有图像统一基准数据集的广泛实验显示了拟议方法的超强能力 。 代码可在 https://github. com/junleen/RainNet}查阅 。