We introduce a test for the conditional independence of random variables $X$ and $Y$ given a random variable $Z$, specifically by sampling from the joint distribution $(X,Y,Z)$, binning the support of the distribution of $Z$, and conducting multiple $p$-Wasserstein two-sample tests. Under a $p$-Wasserstein Lipschitz assumption on the conditional distributions $\mathcal{L}_{X|Z}$, $\mathcal{L}_{Y|Z}$, and $\mathcal{L}_{(X,Y)|Z}$, we show that it is possible to control the Type I and Type II error of this test, and give examples of explicit finite-sample error bounds in the case where the distribution of $Z$ has compact support.
翻译:我们采用随机变量X美元和Y美元有条件独立的测试,给随机变量Z美元,特别是从联合分配(X,Y,Z)美元中取样,支持Z美元的分配,并进行多种美元-Wasserstein双系列测试。在以美元-Wasserstein Lipschitz假设有条件分配($\mathcal{L ⁇ X$)、美元\mathcal{L ⁇ Y ⁇ $和$\mathcal{L ⁇ (X,Y)$的情况下,我们证明有可能控制这一测试的I类和II类错误,并举例说明在Z美元的分配得到压缩支持的情况下,明确的有限抽样错误。