We study a novel problem of fairness in ranking aimed at minimizing the amount of individual unfairness introduced when enforcing group-fairness constraints. Our proposal is rooted in the distributional maxmin fairness theory, which uses randomization to maximize the expected satisfaction of the worst-off individuals. We devise an exact polynomial-time algorithm to find maxmin-fair distributions of general search problems (including, but not limited to, ranking), and show that our algorithm can produce rankings which, while satisfying the given group-fairness constraints, ensure that the maximum possible value is brought to individuals.
翻译:我们研究的是一个新的排名公平问题,其目的是尽量减少在执行群体公平限制时引入的个人不公平程度。 我们的建议植根于分配最高公平理论,该理论利用随机化来最大限度地提高最坏个人预期的满意度。 我们设计了精确的多元时间算法,以找到一般搜索问题(包括但不限于排名)的最大公平分布,并表明我们的算法可以产生排序,既满足特定群体公平限制,又确保给个人带来最大可能的价值。