We introduce a prior for the parameters of univariate continuous distributions, based on the Wasserstein information matrix, which is invariant under reparameterisations. We discuss the links between the proposed prior with information geometry. We present sufficient conditions for the propriety of the posterior distribution for general classes of models. We present a simulation study that shows that the induced posteriors have good frequentist properties.
翻译:我们根据瓦森斯坦信息矩阵,对单体连续分布参数进行事先介绍,该矩阵是无差异的,正在重新校正。我们讨论了先前建议与信息几何之间的联系。我们为一般类型的模型的后方分布提供了适当的充分条件。我们提出模拟研究,表明诱导的后方具有良好的常客特性。