We study several generalizations of the Online Bipartite Matching problem. We consider settings with stochastic rewards, patience constraints, and weights (both vertex- and edge-weighted variants). We introduce a stochastic variant of the patience-constrained problem, where the patience is chosen randomly according to some known distribution and is not known until the point at which patience has been exhausted. We also consider stochastic arrival settings (i.e., online vertex arrival is determined by a known random process), which are natural settings that are able to beat the hard worst-case bounds of more pessimistic adversarial arrivals. Our approach to online matching utilizes black-box algorithms for matching on star graphs under various models of patience. In support of this, we design algorithms which solve the star graph problem optimally for geometrically-distributed patience and yield a 1/2-approximation for any patience distribution. This 1/2-approximation also improves existing guarantees for cascade-click models in the product ranking literature, in which a user must be shown a sequence of items with various click-through-rates and the user's patience could run out at any time. We then build a framework which uses these star graph algorithms as black boxes to solve the online matching problems under different arrival settings. We show improved (or first-known) competitive ratios for these problems. We also present negative results that include formalizing the concept of a stochasticity gap for LP upper bounds on these problems, showing some new stochasticity gaps for popular LPs, and bounding the worst-case performance of some greedy approaches.


翻译:我们研究在线双向匹配问题的一些概括性。 我们考虑的是具有随机奖赏、 耐性约束和重量( 包括顶端和边缘加权变异体) 的设置。 我们引入了耐心受限问题的随机变方, 耐心是根据某些已知的分布随机选择的, 并且直到耐心耗尽的点才为人所知。 我们还考虑的是随机抵达设置( 即, 在线顶端到达由已知的随机过程决定 ), 这些是能够战胜更悲观对称抵达者最坏的框框框的自然设置。 我们的在线匹配方法在各种耐心模式下使用黑箱算法匹配恒星图。 为了支持这一点, 我们设计了算法, 以最优的方式解决恒星图问题, 并且为任何耐心分布带来1/2的匹配性。 这个1/2级P的匹配性P还改进了产品排名文献中目前对级点模型的保障, 其中, 用户必须首先用黑箱算出一个对等用户的排序 。 我们设计了这些上行式的升级的流程框架, 显示这些用户的升级 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
7+阅读 · 2018年12月26日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员