Another year of the multimodal brain tumor segmentation challenge (BraTS) 2021 provides an even larger dataset to facilitate collaboration and research of brain tumor segmentation methods, which are necessary for disease analysis and treatment planning. A large dataset size of BraTS 2021 and the advent of modern GPUs provide a better opportunity for deep-learning based approaches to learn tumor representation from the data. In this work, we maintained an encoder-decoder based segmentation network, but focused on a modification of network training process that minimizes redundancy under perturbations. Given a set trained networks, we further introduce a confidence based ensembling techniques to further improve the performance. We evaluated the method on BraTS 2021 validation board, and achieved 0.8600, 0.8868 and 0.9265 average dice for enhanced tumor core, tumor core and whole tumor, respectively. Our team (NVAUTO) submission was the top performing in terms of ET and TC scores and within top 10 performing teams in terms of WT scores.
翻译:2021年多式脑肿瘤分解挑战的另一年(BraTS)提供了更大规模的数据集,以促进合作和研究脑肿瘤分解方法,这是疾病分析和治疗规划所必需的。2021年BraTS的庞大数据集规模和现代GPU的出现为深层学习方法从数据中学习肿瘤代表提供了更好的机会。在这项工作中,我们保持了一个基于分解的编码器解码器网络,但侧重于修改网络培训过程,以尽量减少受扰动的冗余。鉴于一套经过培训的网络,我们进一步采用了基于信任的组合技术来进一步改进性能。我们评估了2021年BRATS验证委员会的方法,并分别为强化的肿瘤核心、肿瘤核心和整个肿瘤分别实现了0.8600、0.886868和0.9265平均dice。我们的团队(NUAUATTO)的呈件在ET和TC评分方面表现最出色,在WT评分方面表现最高。