Deep learning networks generally use non-biological learning methods. By contrast, networks based on more biologically plausible learning, such as Hebbian learning, show comparatively poor performance and difficulties of implementation. Here we show that hierarchical, convolutional Hebbian learning can be implemented almost trivially with modern deep learning frameworks, by using specific losses whose gradients produce exactly the desired Hebbian updates. We provide expressions whose gradients exactly implement a plain Hebbian rule (dw ~= xy), Grossberg's instar rule (dw ~= y(x-w)), and Oja's rule (dw ~= y(x-yw)). As an application, we build Hebbian convolutional multi-layer networks for object recognition. We observe that higher layers of such networks tend to learn large, simple features (Gabor-like filters and blobs), explaining the previously reported decrease in decoding performance over successive layers. To combat this tendency, we introduce interventions (denser activations with sparse plasticity, pruning of connections between layers) which result in sparser learned features, massively increase performance, and allow information to increase over successive layers. We hypothesize that more advanced techniques (dynamic stimuli, trace learning, feedback connections, etc.), together with the massive computational boost offered by modern deep learning frameworks, could greatly improve the performance and biological relevance of multi-layer Hebbian networks.
翻译:深层学习网络通常使用非生物学习方法。 相反,基于更生物可信的学习的网络,如Hebbian 学习,显示相对较差的绩效和执行困难。 我们在这里显示,通过使用具体损失,其梯度产生完全想要的Hebbian更新信息,等级、革命性黑比亚的学习几乎微不足道。 我们提供其梯度精确地实施普通Hebbian规则(dw ⁇ ⁇ xxxxx)的表达方式(dw y-w),格罗斯贝格的恒星规则(dw y(x-w))和Oja的规则(dw ⁇ y(x-yw)) 。 作为应用程序,我们建设了Hebbian 共进化多层网络,以表彰目标。我们观察到,更高层次的此类网络往往学习大而简单的特征(Gabor类过滤器和blobs),解释了先前报告的连续层变分解性表现的下降。 为了消除这一趋势,我们引入了干预(密度, 以稀释性激活生物性激活, 以及跨层之间的连接 ), 大大地提高了高级学习技术, 并允许信息的升级的升级性反应。